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Abstract
An investigation was conducted into the capabilities and accuracy of a representa-
tive computational fluid dynamics code to predict the flow field and aerodynamic
characteristics of typical wind-turbine airfoils. Comparisons of the computed pres-
sure and aerodynamic coefficients were made with wind tunnel data. This work
highlights two areas in CFD that require further investigation and development in
order to enable accurate numerical simulations of flow about current generation
wind-turbine airfoils: transition prediction and turbulence modeling. The results
show that the laminar-to-turbulent transition point must be modeled correctly to
get accurate simulations for attached flow. Calculations also show that the stan-
dard turbulence model used in most commercial CFD codes, the k-ε model, is not
appropriate at angles of attack with flow separation.
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Nomenclature

c chord
Cd drag coefficient = d/qS
Cl lift coefficient = l/qS
Cm moment coefficient about 0.25c = m/qcS
Cp pressure coefficient = (p-p∞)/q
d drag
l lift
m pitch moment
p pressure
p∞ freestream reference pressure
q dynamic pressure =
U∞ freestream velocity
uτ friction velocity =
x axial coordinate from nose
y normal coordinate from meanline
y+ dimensionless sublayer distance from wall = uτy/ν
α angle of attack
ν kinematic viscosity
ρ density
ρw density at wall
τw wall shear stress

ρU∞
2

2⁄

τw ρw⁄
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Predicting Aerodynamic
Characteristics of Typical Wind Turbine

Airfoils Using CFD

Introduction
In the design of a commercially viable wind turbine, it is critical that the design

team have an accurate assessment of the aerodynamic characteristics of the air-
foils that are being considered. Errors in the aerodynamic coefficients will result in
errors in the turbine’s performance estimates and economic projections. The most
desirable situation is to have accurate experimental data sets for the correct air-
foils throughout the design space. However, such data sets are not always available
and the designer must rely on calculations.

Methods for calculating airfoil aerodynamic characteristics range from coupled
potential-flow/boundary-layer methods (e.g., VSAERO, 1994) to full-blown compu-
tational fluid dynamics (CFD) calculations of the Navier-Stokes equations. Poten-
tial-flow/boundary-layer methods are computationally efficient and yield accurate
solutions for attached flow, but in general, they cannot be used for post-stall calcu-
lations. Some recent investigators have had limited success in developing empirical
correlations to extend these types of codes into the post-stall region (e.g., Dini, et
al., 1995), however, this is still a research area and the technique has not yet been
shown to be applicable to a wide range of airfoils.

Recent applications of CFD to solve the Navier-Stokes equations for wind-tur-
bine airfoils are reflected in the works of Yang, et al. (1994, 1995) and Chang, et al.
(1996). They used their in-house code to solve the 2-D flow field about the S805 and
S809 airfoils in attached flow (Yang, et al., 1994; Chang, et al., 1996) and the S809
airfoil in separated flow (Yang, et al., 1995). Computations were made with the
Baldwin-Lomax (1978), Chein’s (1982) low-Reynolds-number k-ε, and Wilcox’s
(1994) low-Reynolds-number k-ω turbulence models.
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For angles of attack with attached flow, they generally obtained good agreement
between calculated and experimental pressure coefficients. There was some under-
prediction of Cp over the forward half of the upper surface for both airfoils in vicin-
ity of α = 5°. In their 1994 work (Yang, et al., 1994), they were able to get good
agreement between the 5.13° experimental data and a calculation at α = 6° for the
S805. This suggested experimental error as a possible explanation for the under-
prediction. However, since the same discrepancy occurs for the S809 airfoil (Chang,
et al. 1996), the probability of experimental error is greatly reduced. (In this work,
we offer a different explanation for this discrepancy.) As the flow begins to sepa-
rate, they found that the Baldwin-Lomax turbulence model did a poor job of pre-
dicting the airfoil’s pressure distribution. Both of the other models gave equally
good Cp results, but the k-ω model had better convergence properties.

The majority of the published results of using CFD codes to calculate wind-tur-
bine airfoil aerodynamic characteristics used in-house research codes that are not
readily available to the typical wind turbine designer. In 1995, we began a limited
investigation into the capabilities and accuracy of commercially available CFD
codes for calculating the aerodynamic characteristics of wind-turbine airfoils.
Because of the limited resources available, we limited our study to one CFD code
and two airfoil sections, one laminar-flow and one primarily turbulent-flow airfoil.
In the following, we present the results of this study. In this report, we do not show
error bars on the experimental data since the original wind-tunnel data reports do
not provide error estimates.

S809 Airfoil Section
For a typical horizontal-axis wind-turbine (HAWT) airfoil, we chose the S809.

The S809 is a 21% thick, laminar-flow airfoil designed specifically for HAWT appli-
cations (Somers, 1997). A sketch of the airfoil is shown in Figure 1. A 600 mm-
chord model of the S809 was tested in the 1.8 m × 1.25 m, low-turbulence wind tun-
nel at the Delft University of Technology. The results of these tests are reported by
Somers (1997) and are used in this report for comparison with the numerical
results. Another similarly sized model of the S809 was tested at Ohio State Univer-
sity (Gregorek, et al., 1989). Our comparisons of the two experimental data sets
showed that the results are essentially identical.

The experimental data show that at positive angles of attack below approxi-
mately 5°, the flow remains laminar over the forward half of the airfoil. It then
undergoes laminar separation followed by a turbulent reattachment. As the angle
of attack is increased further, the upper-surface transition point moves forward
and the airfoil begins to experience small amounts of turbulent trailing-edge sepa-
ration. At approximately 9°, the last 5% to 10% of the upper surface is separated.
The upper-surface transition point has moved forward to approximately the lead-
ing edge. As the angle of attack is increased to 15°, the separated region moves for-
ward to about the midchord. With further increases in angle of attack, the
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separation moves rapidly forward to the vicinity of the leading edge, so that at
about 20°, most of the upper surface is stalled.

The S809 profile was developed using the Eppler design code (Eppler and Som-
ers, 1980a, 1980b). Consequently, the surface profile is defined by a table of coordi-
nates rather than by an analytical expression. To obtain the fine resolution needed
for our numerical simulations, we interpolated between the defining surface coordi-
nates using a cubic spline.

NACA 0021 Airfoil Section
The NACA 0021 airfoil is one of the NACA four-digit wing section series. It is a

21% thick, symmetrical airfoil with the point of maximum thickness located at x/c
= 0.30, where x is the axial coordinate measured from the airfoil’s nose and c is the
chord length. A complete description of the airfoil can be found in Abbott and von
Doenhoff (1959). Figure 2 shows the NACA 0021 profile.

The experimental data that are compared with the CFD calculations were
taken from Gregorek, et al. (1989). An NACA 0021 airfoil section was tested in the

OSU  trisonic wind tunnel at Mach = 0.20 and Reynolds number = .
Surface pressures were measured with 56 taps distributed along the surface. Only
the steady-state data are used for the following comparisons.

x/c

y/
c

0.00 0.20 0.40 0.60 0.80 1.00
-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

Figure 1. S809 Airfoil Profile

6″ 22″× 1.5
6×10
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CFD Code
Since we could examine only one code, we wanted a code with capabilities that

were more or less representative of most commercial CFD codes. We looked for the
capability to calculate incompressible, laminar/turbulent, 2-D/3-D, steady/
unsteady flows, and to run on desk-top workstations. For our calculations, we used
a SUN SPARC-10. Resource constraints forced us to look at codes that were cur-
rently licensed for Sandia’s computing facilities. We made no effort to find the
“best” CFD code for wind turbine applications.

Based on these criteria and constraints, we selected CFD-ACE for our studies.
CFD-ACE is a computational fluid dynamics code that solves the Favre-averaged
Navier-Stokes equations using the finite-volume approach on a structured, multi-
domain, non-overlapping, non-orthogonal, body-fitted grid (CFDRC, 1993). The
solution algorithms are pressure based. The code can solve laminar and turbulent,
incompressible and compressible, 2-D and 3-D, steady and unsteady flows. Several
turbulence models are available, including Baldwin-Lomax, Launder and Spalding
k-ε, Chien low-Reynolds number k-ε, RNG* k-ε, and k-ω. The default model is Laun-
der and Spalding k-ε. During this investigation, we experienced problems with the

*Re-Normalization Group

x/C

y/
C

0.00 0.20 0.40 0.60 0.80 1.00
-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

Figure 2. NACA 0021 Section Profile
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k-ω model. CFDRC was able to duplicate our results and began an effort to identify
and fix the problem. The k-ω model, therefore, was not available for this study.
CFD-ACE has the capability to handle domain interfaces where the number of cells
in adjacent domains are not equal, although each cell in the coarser-grid domain
must exactly interface with an integer number of cells in the finer-grid domain.
This capability was used in our simulations of mixed laminar/turbulent flow.

S809 Numerical Results
Our initial CFD simulations used a C-type grid topology with approximately

300 cells along the airfoil’s surface and 24 cells normal to the surface. The normal
grid spacing was stretched so that the cell thickness at the surface gave y+ ≥ 30. In
the streamwise direction, the wake was modeled with 32 cells. The computational
domain extended to 10 chord lengths from the body in all directions. Fully turbu-
lent flow was assumed using the default k-ε turbulence model. All calculations
were made at a Reynolds number of 2×106 and assumed incompressible flow.

Figures 3 through 5 show comparisons between the calculated and experimen-
tal surface pressure distributions for angles of attack of 0°, 1.02°, and 5.13°, respec-
tively. The Cp comparisons for 0° and 1.02° show reasonably good agreement over
the entire airfoil surface, except in the regions of the laminar separation bubbles.
The experimental pressure distributions show the laminar separation bubbles just
aft of the midchord on both the upper and lower surfaces. They are indicated by the
experimental data becoming more-or-less constant with respect to x/c, followed by
an abrupt increase in pressure as the flow undergoes turbulent reattachment.
Since the calculations assume fully turbulent flow, no separation is indicated in the
numerical results.

Figure 5 shows that the pressure comparison for 5.13° is good except over the
forward half of the upper surface. Here the calculation is not adequately capturing
the suction-side pressure. This is the same discrepancy found by Yang, et al. (1994)
and Chang, et al. (1996).

Table 1 compares the aerodynamic coefficients for these same three cases. The
predicted lift coefficients are accurate to within 10% and the moment coefficients to
within 16%. The predicted drag coefficients are between 50% and 80% higher than
the experiment results. This overprediction of drag was expected since the actual
airfoil has laminar flow over the forward half.

Before proceeding with calculations at higher angles of attack, we made a more
detailed analysis of the errors in the calculated pressure on the forward half of the
upper surface for 5° angle of attack. In order to increase our confidence in the
experimental data, we compared the data from Somers (1997) with data from Ohio
State’s tests (Gregorek, 1989). Figures 6 and 7 show comparisons for approxi-
mately 4° and 6° angle of attack. These figures show good agreement between the
different experiments. This indicates that the data are correct and that the differ-
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Figure 3. Pressure Distribution for S809 atα = 0°, Fully Turbulent Calculation
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Figure 4. Pressure Distribution for S809 atα = 1.02°, Fully Turbulent Calculation
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ences between the calculated and experimental results are due to errors in the cal-
culations.

We ran calculations with all of the available turbulence models and tried sev-
eral grid refinements, especially around the nose. The results were essentially the
same as those shown in Figure 5. To check the effects of the fully turbulent flow
assumption, we also ran an Euler calculation at this angle of attack. The results
are shown in Figure 8. This comparison shows very good agreement over the for-
ward half of both the upper and lower surfaces, indicating that the disagreement in
Figure 5 is a result of assuming turbulent flow over the forward half of the airfoil.

Table 1: Comparisons Between S809 Calculated and Experimental Aerodynamic Coefficients,
Fully Turbulent Calculations

α
deg

Cl Cd Cm

calc exp
error

×104
%

error
calc exp

error

×104
%

error
calc exp

error

×104
%

error

0 0.1324 0.1469 -145 -10 0.0108 0.0070 38 54 -0.0400 -0.0443 43 -10

1.02 0.2494 0.2716 -222 -8 0.0110 0.0072 38 53 -0.0426 -0.0491 65 -13

5.13 0.7123 0.7609 -486 -6 0.0124 0.0070 54 77 -0.0513 -0.0609 96 -16

x/c

C
p

0.00 0.20 0.40 0.60 0.80 1.00
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0.50
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-0.50
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Figure 5. Pressure Distributions for S809 atα = 5.13°, Fully Turbulent Calculation



18

g

X/C

C
p

0.00 0.20 0.40 0.60 0.80 1.00
1.00

0.50

0.00

-0.50

-1.00

-1.50

Somers - Re 2e6

OSU - Re 1.5e6

Figure 6. Comparison of Experimental Data for S809 at 4.1° Angle of Attack
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Figure 7. Comparison of Experimental Data for S809 at Approx. 6.2° Angle of Attack
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The pressure at the tail of the airfoil shows some error because the effect of the
thickening boundary layer is not captured. We tried running a fully laminar calcu-
lation, but could not get a converged solution. The laminar flow separated on both
surfaces at approximately the 50% chord positions, but because there was no tur-
bulence model, it was unable to transition and reattach as occurs in the actual flow.

Both the S809 and the S805 airfoils have relatively sharp leading edges. At α =
5.13°, the lower-surface stagnation point is displaced somewhat from the leading
edge but is still relatively close. We believe that the problem with the calculations
is that the turbulence models used for the calculations (both ours and those of Yang
and Chang) cannot adequately capture the very rapid acceleration that occurs as
the air flows from the stagnation point, around the airfoils’ nose, to the upper sur-
face.

After some thought and consultation with the staff at CFDRC, we decided that
what was needed was the ability to simulate a mixture of both laminar and turbu-
lent flow, i.e., we needed a good transition model in the code. This would allow us to
more accurately predict the surface pressure and greatly improve the drag predic-
tions. Unfortunately, we know of no good production transition models with univer-
sal applicability. To the best of our knowledge, no commercially available CFD code
contains a transition model. CFDRC agreed to add the capability to run mixed lam-
inar and turbulent flow by splitting the computational region into different
domains and specifying laminar flow within certain domains. The remaining
domains use the standard k-ε turbulence model. The disadvantages of this

x/c

C
p

0.00 0.20 0.40 0.60 0.80 1.00
1.00

0.50

0.00

-0.50

-1.00

-1.50

CFD-ACE

experimental

Figure 8. Pressure Distribution for S809 atα = 5.13°, Euler Calculation
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approach are that the accuracy of the simulation depends on one’s ability to accu-
rately guess the transition location, and a new grid must be generated if one wants
to change the transition location.

Figure 9 shows the comparison for surface pressure at α = 5.13° with this mixed
laminar/turbulent model. This simulation used 324 cells along the airfoil surface
and 32 cells normal to the surface in the laminar domain. The spacing normal to
the wall was stretched to give y+ ≤ 5 in the laminar region and y+ ≥ 30 in the turbu-
lent regions. This change in the cell thickness at the wall is necessary because lam-
inar flow is calculated up to the wall, while turbulent flow using the k-ε turbulence
model uses wall functions within the cell at the wall. The transition locations on
both the upper and lower surfaces were specified at the locations of maximum
thickness as measured from the mean line; x/c = 0.45 on the upper surface and x/c
= 0.40 on the lower surface. The “wiggles” in the calculated pressure curves at
these points are an artifact of the domain interface where four cells in the laminar
domain interface with one cell in the turbulent domain.

The pressure coefficients are in very good agreement over the full airfoil sur-
face, except for a small region on the upper-surface leading edge where the pres-
sure is underpredicted. We believe that this is due to a small inaccuracy in the
leading edge radius. The table of defining surface coordinates (Somers, 1997) does
not give sufficient definition of the S809 leading edge to accurately duplicate the
leading edge radius of the experimental model. Table 2 shows the comparison of
the aerodynamic coefficients. At 5°, the lift coefficient is now equal to the experi-

x/c

C
p

0.00 0.20 0.40 0.60 0.80 1.00
1.00

0.50

0.00

-0.50

-1.00

-1.50
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Figure 9. Pressure Distribution for S809 atα = 5.13°, Mixed Laminar/Turbulent Calculation
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mental value. The pitch moment has a 4% error, and the error in the calculated
drag has been reduced to 1%. The errors in the coefficients at 0° and 1° have also
been significantly reduced. These angles of attack were rerun using the same grid
as for the 5° case.

These results emphasize the need for the inclusion of a good transition model in
CFD calculations, especially for airfoils typical of those used for horizontal axis
wind turbines. Without a transition model, accurate predictions of aerodynamic
coefficients over the full range of angles of attack are not possible.

Figures 10 through 12 show the pressure distributions for angles of attack of
9.22°, 14.24°, and 20.15°, respectively. For these angles of attack, the upper-surface
transition point was moved forward to the leading edge. The lower-surface transi-
tion point remained at x/c = 0.40. At 20.15°, the simulations were run fully turbu-
lent. For 9.22°, the computed pressure distribution agrees well with the experiment
except for approximately the last 10% of the trailing edge. The experimental data
show that there is a small separation zone on the upper surface in this region. This
separation was not predicted by the simulation. At 14.24° and 20.15°, there is con-
siderable difference between the experimental and numerical results. The experi-
mental data show that at 14.24° the aft 50% of the upper surface has separated
flow. The calculations predict separation over only the aft 5%. At 20.15°, the flow is
separated over most of the upper surface. The calculations predict separation on
only the aft 50%.

The calculations of Yang, et al., (1995) using the k-ω turbulence model were able
to predict the separation at the trailing edge at α = 9.22°. They did not run the α =
14.24° case. At α = 20.15°, their calculated pressure distribution was essentially
the same as that shown in Fig. 12.

These discrepancies between the experimental data and the calculations are
also reflected in the aerodynamic coefficients in Table 2. Figures 13 through 15

Table 2: Comparisons Between S809 Calculated and Experimental Aerodynamic Coefficients,
Mixed Laminar/Turbulent Calculations

α
deg

Cl Cd Cm

calc exp
error

×104
%

error
calc exp

error

×104
%

error
calc exp

error

×104
%

error

0 0.1558 0.1469 89 6 0.0062 0.0070 -8 -11 -0.0446 -0.0443 -3 1

1.02 0.2755 0.2716 39 1 0.0062 0.0072 -10 -14 -0.0475 -0.0491 16 -3

5.13 0.7542 0.7609 -67 -1 0.0069 0.0070 -1 -1 -0.0586 -0.0609 23 -4

9.22 1.0575 1.0385 190 2 0.0416 0.0214 202 95 -0.0574 -0.0495 -79 16

14.24 1.3932 1.1104 2828 25 0.0675 0.0900 -225 -25 -0.0496 -0.0513 17 -3

20.15 1.2507 0.9113 3394 37 0.1784 0.1851 -67 -4 -0.0607 -0.0903 396 -33



22

x/c

C
p

0.00 0.20 0.40 0.60 0.80 1.00
1.00

0.00

-1.00

-2.00

-3.00

-4.00

CFD-ACE

Experimental

Figure 10. Pressure Distribution for S809 atα = 9.22°, Mixed Laminar/Turbulent Calculation
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Figure 11. Pressure Distribution for S809 atα = 14.24°, Mixed Laminar/Turbulent Calculation
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Figure 12. Pressure Distribution for S809 atα = 20.15°, Fully Turbulent Calculation
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Figure 13. S809 Lift Coefficients
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compare the numerical and experimental lift, drag, and moment coefficients,
respectively. The calculated lift coefficients are accurate through approximately 9°
angle of attack. Above this angle, the calculations do not pick up the airfoil’s stall
behavior and, therefore, overpredict the lift. The drag and pitch moment show sim-
ilar behavior. The accuracy of the calculated pitching moment at α = 14.24° and the
drag at α = 20.15° are more accidental than due to accurate modeling of the flow.

NACA 0021 Numerical Results
The computations for the NACA 0021 airfoil were made using a C-type grid that

extended 10 chord lengths from the body in all directions. The direction normal to
the body used 64 cells. The airfoil surface was modeled with a total of 256 cells, 128
cells each on the upper and lower surfaces. The wake was modeled with 64 cells.
This gives a total of 20,480 cells in the computational domain. The y+ values at the
wall were adjusted to be consistent with the turbulence model that was used. For
the k-ε model, 30 < y+ < 60. In laminar regions, y+ < 10. All calculations assumed

incompressible flow at a Reynolds number of .

Figure 16 shows the comparison between experimental data and the computa-
tions using the k-ε turbulence model. There were two experimental runs at these
conditions, hence the two experimental data sets. This figure shows that the com-
puted Cp’s are somewhat lower than the experimental data. In order to determine
the reason for this discrepancy, we also ran an Euler solution. The results of this
run are shown in Fig. 17. The comparison looks similar to that in Fig. 16. We also
tried a calculation using a mix of laminar and turbulent flow. The transition points
were specified to be at the points of maximum thickness, x/c = 0.30. These results
are shown in Fig. 18. Again, the comparison looks similar. Figure 19 shows a com-
parison of the results from all three calculations. They are essentially identical.
These results show that the discrepancy between the calculated and experimental
pressure coefficients is not due to presence of laminar flow over the forward por-
tions of the airfoil. It is interesting to note that, unlike the S809, a transition model
is not required for accurate Cp predictions.

A closer examination of the experimental data allows us to make some interest-
ing observations. At α = 0°, there are two data sets representing results from two
separate runs (designated “a” and “b” in Figs. 16-18). The data show that there are
some differences between the data from the different runs. However, the greatest
differences are between data taken during the same run at the same chordwise sta-
tion. An examination of the data plots in Gregorek, et al. (1989) shows that these
differences occur between data taken on the upper and on the lower surfaces. Table
3 shows a comparison between pressure coefficients measured at two chordwise
stations, x/c = 0.08 and x/c = 0.20. The differences between data taken on the
same surfaces during different runs are all less than 6%. The lower surface has less
difference than the upper surface. Within the same runs, however, the differences
between data from the upper and lower surfaces range from 11% to 26%. One

1.5
6×10
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Figure 16. Pressure Coefficient Comparison for NACA 0021 atα = 0°, k-ε Turbulence Model
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Figure 17. Pressure Coefficient Comparison for NACA 0021 atα = 0°, Euler Calculation
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would not expect this magnitude of difference on a supposedly symmetrical model
tested a 0° angle of attack. This leads us to suspect a problem with either the
model, the pressure tap installation, or the instrumentation. At this time, there is
no way to determine the cause.

Abbott and von Doenhoff (1959) provide some airfoil data derived from potential
flow theory that can be used to estimate the pressure distribution about a NACA
0021 airfoil. Their theoretical results are compared with both the computed and
experimental pressures in Fig. 20. Over the forward half of the airfoil, these theo-
retical data are in good agreement with the experimental data from the airfoil’s
lower surface. Over the aft half of the airfoil, these data deviate slightly from the
experimental data. This is to be expected since the potential flow data do not
account for the thickening boundary layer. From these comparisons, we conclude
that the data from the lower surface appear to be accurate, while there is some
error in the upper-surface data. The calculations do a reasonable job of computing
the pressure distribution, although the code is again not computing the minimum
suction peak correctly.

Figures 21 through 25 show comparisons between calculated and experimental
pressure coefficients for angles of attack of 6°, 12°, 16°, 20°, and 45°, respectively.
At α = 6° and 12°, the code does a reasonable accurate job of predicting Cp. At α =
16° and above, the quality of the agreement between calculation and experiment
declines. From the experimental data at α = 12°, there appears to be some flow sep-
aration over last 10-20% of the upper surface. At α = 16°, the separation point has
moved forward to approximately midchord. The separation point moves to about x/
c = 0.25 at α = 20°, and at α = 45°, the flow separates at the leading edge. The code
does not accurately predict separation for any of the angles of attack below 45°.

Figures 26 through 28 show comparisons for lift, drag, and moment coefficients,
respectively. These same data are presented in tabular form in Table 4. These data
show that below the point of flow separation, the predicted aerodynamic coeffi-
cients are not exact, but are reasonable. The %-errors are quite high at low angles
of attack because the forces are very low. After the start of flow separation, how-
ever, the comparisons are very poor.

Table 3: Pressure Coefficient Comparison Between Upper and Lower Surfaces and Between
Runs for NACA 0021 atα = 0°

x/c = 0.08 x/c = 0.20

Upper Surface Lower Surface %-diff Upper Surface Lower Surface %-diff

Run A -0.854 -0.660 25.6 -0.853 -0.759 11.7

Run B -0.805 -0.654 20.7 -0.821 -0.736 10.9

%-diff 5.9 0.9 3.8 3.1
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Figure 20. Comparison of Potential Flow Theory with Calculated and Experimental Results
for NACA 0021 atα = 0°
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Figure 21. Pressure Coefficient Comparison for NACA 0021 atα = 6°, k-ε Turbulence Model
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Figure 22. Pressure Coefficient Comparison for NACA 0021 atα = 12°, k-ε Turbulence Model
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Figure 23. Pressure Coefficient Comparison for NACA 0021 atα = 16°, k-ε Turbulence Model
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Figure 24. Pressure Coefficient Comparison for NACA 0021 atα = 20°, k-ε Turbulence Model
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Figure 25. Pressure Coefficient Comparison for NACA 0021 atα = 45°, k-ε Turbulence Model
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Figure 26. Comparison of NACA 0021 Calculated and Experimental Lift Coefficients
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Figure 27. Comparison of NACA 0021 Calculated and Experimental Drag Coefficients
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Table 4: Comparisons Between NACA 0021 Calculated and Experimental Aerodynamic
Coefficients

α
deg

Cl Cd Cm

calc exp
error

×103
%

error
calc exp

error

×104
%

error
calc exp

error

×103
%

error

0 0.0005 0.033 -33 -98 0.0084 0.0082 2 2 -0.0001 0.0015 -2 -107

6 0.6012 0.528 73 14 0.0146 0.0095 51 54 0.0058 0.024 -21 -88

12 1.0575 1.025 110 11 0.0307 0.0148 159 107 0.0157 0.041 -25 -62

16 1.3980 1.071 327 31 0.0498 0.0768 -270 -35 0.0256 0.026 -0.0 -2

20 1.5237 0.984 540 55 0.0800 0.1413 -613 -43 0.0315 -0.004 36 886

45 0.9159 0.994 -78 -8 0.7132 0.4632 2500 54 -0.2103 -0.225 -15 -7
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Figure 28. Comparison of NACA 0021 Calculated and Experimental Moment Coefficients
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Summary and Conclusions
This report gives the results of our investigation into the capabilities and accu-

racy of a typical commercially available computational fluid dynamics code to pre-
dict the flow field and aerodynamic characteristics of wind-turbine airfoils. We
have reaffirmed two areas in CFD that require further investigation and develop-
ment in order to enable accurate numerical simulations of flow about current gen-
eration wind-turbine airfoils: transition prediction and turbulence modeling.

It must be noted that the calculations presented here were not blind calcula-
tions. We knew a priori the transition location from the experimental data and
placed the computational transition as close as possible, consistent with numerical
stability, to the actual locations. What these calculations show is that accurate pre-
dictions of the aerodynamic coefficients for attached flow are possible if one knows
where the flow transitions. In an actual design environment, however, the designer
would not know a priori the transition location, and would, therefore, need to make
a reasonably accurate guess. This requires a designer with aerodynamic experi-
ence. What is really needed is an accurate, universally applicable transition model.

Horizontal axis wind turbines routinely operate in the post-stall regime, so
accurate predications in this area are important. While this is a dynamic environ-
ment rather than a static one, we consider accurate static calculations a prerequi-
site to accurate dynamic calculations. We have shown that the default turbulence
model in most CFD codes, the k-ε model, is not sufficient for accurate aerodynamic
predictions at angles of attack in the post-stall region. This is understandable
when one considers that the k-ε model uses wall functions based on the law of the
wall and that the law of the wall does not hold for separated flows (Wilcox, 1994).
An extensive investigation is required to determine the best transition and turbu-
lence models for wind turbine applications.
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